Dans un rapport publié le 25 janvier dans Nature Energy, l'équipe de Stanford décrit une méthode simple, en trois étapes pour la construction de cages de graphène microscopiques dont la taille convient au matériau de l'anode : assez spacieux pour permettre l'expansion de la particule de silicium lorsque la batterie se charge, mais assez étroit pour retenir tous les morceaux ensemble lorsque la particule se fissure, afin qu'il puisse continuer à fonctionner à pleine capacité. Les cages, solides et flexibles, bloquent également les réactions chimiques destructrices avec l'électrolyte.
Cette animation en boucle d'un microscope électronique montre le nouveau matériel de la batterie en action: une particule de silicium expansion et à la fissuration dans une cage de graphène pendant la charge. La cage maintient les pièces de l'ensemble des particules et conserve sa conductivité électrique et de la performance. (Hyun-Wook Lee / Université de Stanford)
"Lors des essais, les cages de graphène a accru la conductivité électrique des particules et à condition capacité de charge élevée, la stabilité et l'efficacité chimique," a déclaré Yi Cui, professeur agrégé au SLAC et Stanford, qui a dirigé la recherche. "La méthode peut aussi être appliquée à d'autres matériaux d'électrode, permettant de produire des batteries avec des matériaux à faible coût à forte densité énergétique une possibilité réaliste ".
Batteries 101
Les batteries lithium-ion fonctionnent en déplaçant les ions lithium en arrière à travers une solution d'électrolyte entre deux électrodes, la cathode et l'anode. Le chargement de la batterie transfère les ions de la cathode vers l'anode; l'utilisation (ou déchargement) de la batterie déplace les ions dans le sens inverse; de l'anode, ils retournent vers la cathode.
La quête de l'anode en silicium
Lorsqu'il est question de faire des anodes de silicium, les scientifiques ont été contrecarrés par le fait que le silicium prend de l'expansion jusqu'à trois fois sa taille normale lors de la charge. Pour le professeur Cui et ses collaborateurs, la quête première conduit à des anodes faites de nanofils de silicium ou de nanoparticules, qui sont si petits qu'ils sont beaucoup moins susceptibles de se briser. L'équipe a développé une variété de façons de limiter et protéger les nanoparticules de silicium, des structures qui ressemblent à des grenades à revêtements en polymères d'auto-guérison ou hydrogels polymères conducteurs, comme ceux utilisés dans les lentilles de contact souples. Mais la réussite n'est que partielle; l'efficacité de ces anodes n'était pas encore assez élevée et des nanoparticules sont coûteuses et difficiles à fabriquer.
"Cette nouvelle méthode nous permet d'utiliser des particules de silicium beaucoup plus grandes, de un à trois microns, ou millionièmes de mètre de diamètre, qui ne coûtent pas cher et largement disponibles" a dit le professeur Cui. «En fait, nous avons utilisé les particules qui sont très similaires aux déchets produits par le fraisage de lingots de silicium pour fabriquer des puces semi-conductrices; ils sont comme des morceaux de la sciure de bois de toutes formes et tailles.
"Des particules de cette taille n'ont jamais obtenu de bons résultats dans les anodes de batteries avant, donc c'est une nouvelle réalisation très excitante, et nous pensons qu'il offre une solution pratique. "
Pour construire des cages de graphène autour de particules de silicium, les chercheurs enrobent les particules avec du nickel; puis forment des
couches de graphène par dessus le nickel qui a pris de l'expansion en le chauffant à 450°C; finalement, de l'acide est utilisé pour dissoudre le nickel, laissant suffisamment d'espace pour le silicium à l'intérieur de la cage. (Y. Li et al., Nature Energy)
À propos de SLAC
SLAC est un laboratoire multi-programme explorant des questions frontalières dans la science de photons, l'astrophysique, la physique des particules et de la recherche de l'accélérateur. Situé à Menlo Park, en Californie, SLAC est exploité par l'Université de Stanford pour le département américain de l'énergie; Bureau des sciences.
Sources : SLAC , GreenCarCongress, Nature Energy
Contribution : Richard Lemelin, directeur régional AVÉQ - Capitale-Nationale
Commentaires
|